3.1.72 \(\int \frac {x^2}{(a+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [72]

Optimal. Leaf size=410 \[ -\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 d (c d-a f)+a e \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

[Out]

(-a*e-(-a*f+c*d)*x)/(a*c*e^2+(-a*f+c*d)^2)/(c*x^2+a)^(1/2)-1/2*f*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2))
)*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*d*(-a*f+c*d)+a*e*(e-(-4*d*f+e
^2)^(1/2)))/(a*c*e^2+(-a*f+c*d)^2)*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/
2)+1/2*f*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*
f+e^2)^(1/2)))^(1/2))*(2*d*(-a*f+c*d)+a*e*(e+(-4*d*f+e^2)^(1/2)))/(a*c*e^2+(-a*f+c*d)^2)*2^(1/2)/(-4*d*f+e^2)^
(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.42, antiderivative size = 410, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {1077, 1048, 739, 212} \begin {gather*} -\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (2 d (c d-a f)+a e \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

-((a*e + (c*d - a*f)*x)/((a*c*e^2 + (c*d - a*f)^2)*Sqrt[a + c*x^2])) - (f*(2*d*(c*d - a*f) + a*e*(e - Sqrt[e^2
 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2
- 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2 - 2*d
*f - e*Sqrt[e^2 - 4*d*f])]) + (f*(2*d*(c*d - a*f) + a*e*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[
e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sq
rt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1048

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1077

Int[((a_) + (c_.)*(x_)^2)^(p_)*((A_.) + (C_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Si
mp[(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*(
2*a*c*e) + c*(A*(2*c^2*d - c*(2*a*f)) + C*(-2*a*(c*d - a*f)))*x), x] + Dist[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)
^2)*(p + 1)), Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*A*c - 2*a*C)*((c*d - a*f)^2 - ((-a)*e)*(c*e
))*(p + 1) + (2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e))
*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e))*(p + q + 2) - (2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*((-c)*e*(2
*p + q + 4)))*x - c*f*(2*(A*c*(c*d - a*f) - a*(c*C*d - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, c
, d, e, f, A, C, q}, x] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] &&  !( !Intege
rQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx &=-\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\int \frac {2 a c d (c d-a f)-2 a^2 c e f x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 a c \left (a c e^2+(c d-a f)^2\right )}\\ &=-\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\left (f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}-\frac {\left (f \left (2 d (c d-a f)+a e \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}\\ &=-\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {\left (f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}+\frac {\left (f \left (2 d (c d-a f)+a e \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}\\ &=-\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 d (c d-a f)+a e \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.53, size = 303, normalized size = 0.74 \begin {gather*} \frac {-a e-c d x+a f x+\sqrt {a+c x^2} \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a^2 e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-2 c^{3/2} d^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-a e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{\left (c^2 d^2+a^2 f^2+a c \left (e^2-2 d f\right )\right ) \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(-(a*e) - c*d*x + a*f*x + Sqrt[a + c*x^2]*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[
c]*e*#1^3 + f*#1^4 & , (a^2*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - 2*c^(3/2)*d^2*Log[-(Sqrt[c]*x) + Sq
rt[a + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - a*e*f*Log[-(Sqrt[c]*x)
+ Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/((c^2*d^2
 + a^2*f^2 + a*c*(e^2 - 2*d*f))*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1524\) vs. \(2(372)=744\).
time = 0.12, size = 1525, normalized size = 3.72

method result size
default \(\text {Expression too large to display}\) \(1525\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/f*x/a/(c*x^2+a)^(1/2)+1/2*(-e*(-4*d*f+e^2)^(1/2)+2*d*f-e^2)/f^2/(-4*d*f+e^2)^(1/2)*(2/((-4*d*f+e^2)^(1/2)*c*
e+2*a*f^2-2*c*d*f+c*e^2)*f^2/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*
f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+2*c*(e+(-4*d*f+e^2)^(1/2))*f/((
-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*(2*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)-c*(e+(-4*d*f+e^2)^(1/2))/f)
/(2*c*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c^2*(e+(-4*d*f+e^2)^(1/2))^2/f^2)/((x+1/2*(e+(-4*d*f+
e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a
*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)-2/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2*2^(1/2)/(((-4*d*f+e^2)^(1/
2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e
^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)
^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2
*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+1/2*(e^2-2*d*f-
e*(-4*d*f+e^2)^(1/2))/f^2/(-4*d*f+e^2)^(1/2)*(2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2/((x-1/2/f*
(-e+(-4*d*f+e^2)^(1/2)))^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(
1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+2*c*(e-(-4*d*f+e^2)^(1/2))*f/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d
*f+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))-c*(e-(-4*d*f+e^2)^(1/2))/f)/(2*c*(-(-4*d*f+e^2)^(1/2)*c*e+2*a
*f^2-2*c*d*f+c*e^2)/f^2-c^2*(e-(-4*d*f+e^2)^(1/2))^2/f^2)/((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-c*(e-(-4*d*f+
e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)
-2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2
)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(
-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-
4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-%e^2>0)', see `assume?`
for more det

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 24806 vs. \(2 (375) = 750\).
time = 111.16, size = 24806, normalized size = 60.50 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(a*c^2*d^2 - 2*a^2*c*d*f + a^3*f^2 + (c^3*d^2 - 2*a*c^2*d*f + a^2*c*f^2)*x^2 + (a*c^2*x^2 + a^2*c
)*e^2)*sqrt((2*c^3*d^5*f - 6*a*c^2*d^4*f^2 + 6*a^2*c*d^3*f^3 - 2*a^3*d^2*f^4 - a^3*f^2*e^4 - (c^3*d^4 + 3*a^2*
c*d^2*f^2 - 4*a^3*d*f^3)*e^2 + (4*c^6*d^7*f - 24*a*c^5*d^6*f^2 + 60*a^2*c^4*d^5*f^3 - 80*a^3*c^3*d^4*f^4 + 60*
a^4*c^2*d^3*f^5 - 24*a^5*c*d^2*f^6 + 4*a^6*d*f^7 - a^3*c^3*e^8 - (3*a^2*c^4*d^2 - 10*a^3*c^3*d*f + 3*a^4*c^2*f
^2)*e^6 - 3*(a*c^5*d^4 - 8*a^2*c^4*d^3*f + 14*a^3*c^3*d^2*f^2 - 8*a^4*c^2*d*f^3 + a^5*c*f^4)*e^4 - (c^6*d^6 -
18*a*c^5*d^5*f + 63*a^2*c^4*d^4*f^2 - 92*a^3*c^3*d^3*f^3 + 63*a^4*c^2*d^2*f^4 - 18*a^5*c*d*f^5 + a^6*f^6)*e^2)
*sqrt(-(a^6*f^4*e^6 - 2*(a^3*c^3*d^4*f^2 - 3*a^5*c*d^2*f^4 + 2*a^6*d*f^5)*e^4 + (c^6*d^8 - 6*a^2*c^4*d^6*f^2 +
 4*a^3*c^3*d^5*f^3 + 9*a^4*c^2*d^4*f^4 - 12*a^5*c*d^3*f^5 + 4*a^6*d^2*f^6)*e^2)/(4*c^12*d^13*f - 48*a*c^11*d^1
2*f^2 + 264*a^2*c^10*d^11*f^3 - 880*a^3*c^9*d^10*f^4 + 1980*a^4*c^8*d^9*f^5 - 3168*a^5*c^7*d^8*f^6 + 3696*a^6*
c^6*d^7*f^7 - 3168*a^7*c^5*d^6*f^8 + 1980*a^8*c^4*d^5*f^9 - 880*a^9*c^3*d^4*f^10 + 264*a^10*c^2*d^3*f^11 - 48*
a^11*c*d^2*f^12 + 4*a^12*d*f^13 - a^6*c^6*e^14 - 2*(3*a^5*c^7*d^2 - 8*a^6*c^6*d*f + 3*a^7*c^5*f^2)*e^12 - 3*(5
*a^4*c^8*d^4 - 28*a^5*c^7*d^3*f + 46*a^6*c^6*d^2*f^2 - 28*a^7*c^5*d*f^3 + 5*a^8*c^4*f^4)*e^10 - 20*(a^3*c^9*d^
6 - 9*a^4*c^8*d^5*f + 27*a^5*c^7*d^4*f^2 - 38*a^6*c^6*d^3*f^3 + 27*a^7*c^5*d^2*f^4 - 9*a^8*c^4*d*f^5 + a^9*c^3
*f^6)*e^8 - 5*(3*a^2*c^10*d^8 - 40*a^3*c^9*d^7*f + 180*a^4*c^8*d^6*f^2 - 408*a^5*c^7*d^5*f^3 + 530*a^6*c^6*d^4
*f^4 - 408*a^7*c^5*d^3*f^5 + 180*a^8*c^4*d^2*f^6 - 40*a^9*c^3*d*f^7 + 3*a^10*c^2*f^8)*e^6 - 6*(a*c^11*d^10 - 2
0*a^2*c^10*d^9*f + 125*a^3*c^9*d^8*f^2 - 400*a^4*c^8*d^7*f^3 + 770*a^5*c^7*d^6*f^4 - 952*a^6*c^6*d^5*f^5 + 770
*a^7*c^5*d^4*f^6 - 400*a^8*c^4*d^3*f^7 + 125*a^9*c^3*d^2*f^8 - 20*a^10*c^2*d*f^9 + a^11*c*f^10)*e^4 - (c^12*d^
12 - 36*a*c^11*d^11*f + 306*a^2*c^10*d^10*f^2 - 1300*a^3*c^9*d^9*f^3 + 3375*a^4*c^8*d^8*f^4 - 5832*a^5*c^7*d^7
*f^5 + 6972*a^6*c^6*d^6*f^6 - 5832*a^7*c^5*d^5*f^7 + 3375*a^8*c^4*d^4*f^8 - 1300*a^9*c^3*d^3*f^9 + 306*a^10*c^
2*d^2*f^10 - 36*a^11*c*d*f^11 + a^12*f^12)*e^2)))/(4*c^6*d^7*f - 24*a*c^5*d^6*f^2 + 60*a^2*c^4*d^5*f^3 - 80*a^
3*c^3*d^4*f^4 + 60*a^4*c^2*d^3*f^5 - 24*a^5*c*d^2*f^6 + 4*a^6*d*f^7 - a^3*c^3*e^8 - (3*a^2*c^4*d^2 - 10*a^3*c^
3*d*f + 3*a^4*c^2*f^2)*e^6 - 3*(a*c^5*d^4 - 8*a^2*c^4*d^3*f + 14*a^3*c^3*d^2*f^2 - 8*a^4*c^2*d*f^3 + a^5*c*f^4
)*e^4 - (c^6*d^6 - 18*a*c^5*d^5*f + 63*a^2*c^4*d^4*f^2 - 92*a^3*c^3*d^3*f^3 + 63*a^4*c^2*d^2*f^4 - 18*a^5*c*d*
f^5 + a^6*f^6)*e^2))*log((4*a^3*c*d^3*f^3*x*e^3 - 2*a^4*d^2*f^3*e^4 - 4*(c^4*d^7*f - 3*a^2*c^2*d^5*f^3 + 2*a^3
*c*d^4*f^4)*x*e + sqrt(2)*(a^5*f^3*e^7 - (a^2*c^3*d^4*f + a^3*c^2*d^3*f^2 - 5*a^4*c*d^2*f^3 + 7*a^5*d*f^4)*e^5
 + (c^5*d^7 - 2*a*c^4*d^6*f + 2*a^2*c^3*d^5*f^2 + 12*a^3*c^2*d^4*f^3 - 27*a^4*c*d^3*f^4 + 14*a^5*d^2*f^5)*e^3
- 4*(c^5*d^8*f - 2*a*c^4*d^7*f^2 - 2*a^2*c^3*d^6*f^3 + 8*a^3*c^2*d^5*f^4 - 7*a^4*c*d^4*f^5 + 2*a^5*d^3*f^6)*e
- (a^5*c^3*f*e^11 + (a^3*c^5*d^3 + 5*a^4*c^4*d^2*f - 13*a^5*c^3*d*f^2 + 3*a^6*c^2*f^3)*e^9 + (3*a^2*c^6*d^5 -
a^3*c^5*d^4*f - 50*a^4*c^4*d^3*f^2 + 78*a^5*c^3*d^2*f^3 - 33*a^6*c^2*d*f^4 + 3*a^7*c*f^5)*e^7 + (3*a*c^7*d^7 -
 17*a^2*c^6*d^6*f - 33*a^3*c^5*d^5*f^2 + 195*a^4*c^4*d^4*f^3 - 263*a^5*c^3*d^3*f^4 + 141*a^6*c^2*d^2*f^5 - 27*
a^7*c*d*f^6 + a^8*f^7)*e^5 + (c^8*d^9 - 16*a*c^7*d^8*f + 20*a^2*c^6*d^7*f^2 + 112*a^3*c^5*d^6*f^3 - 370*a^4*c^
4*d^5*f^4 + 464*a^5*c^3*d^4*f^5 - 284*a^6*c^2*d^3*f^6 + 80*a^7*c*d^2*f^7 - 7*a^8*d*f^8)*e^3 - 4*(c^8*d^10*f -
4*a*c^7*d^9*f^2 + 28*a^3*c^5*d^7*f^4 - 70*a^4*c^4*d^6*f^5 + 84*a^5*c^3*d^5*f^6 - 56*a^6*c^2*d^4*f^7 + 20*a^7*c
*d^3*f^8 - 3*a^8*d^2*f^9)*e)*sqrt(-(a^6*f^4*e^6 - 2*(a^3*c^3*d^4*f^2 - 3*a^5*c*d^2*f^4 + 2*a^6*d*f^5)*e^4 + (c
^6*d^8 - 6*a^2*c^4*d^6*f^2 + 4*a^3*c^3*d^5*f^3 + 9*a^4*c^2*d^4*f^4 - 12*a^5*c*d^3*f^5 + 4*a^6*d^2*f^6)*e^2)/(4
*c^12*d^13*f - 48*a*c^11*d^12*f^2 + 264*a^2*c^10*d^11*f^3 - 880*a^3*c^9*d^10*f^4 + 1980*a^4*c^8*d^9*f^5 - 3168
*a^5*c^7*d^8*f^6 + 3696*a^6*c^6*d^7*f^7 - 3168*a^7*c^5*d^6*f^8 + 1980*a^8*c^4*d^5*f^9 - 880*a^9*c^3*d^4*f^10 +
 264*a^10*c^2*d^3*f^11 - 48*a^11*c*d^2*f^12 + 4*a^12*d*f^13 - a^6*c^6*e^14 - 2*(3*a^5*c^7*d^2 - 8*a^6*c^6*d*f
+ 3*a^7*c^5*f^2)*e^12 - 3*(5*a^4*c^8*d^4 - 28*a^5*c^7*d^3*f + 46*a^6*c^6*d^2*f^2 - 28*a^7*c^5*d*f^3 + 5*a^8*c^
4*f^4)*e^10 - 20*(a^3*c^9*d^6 - 9*a^4*c^8*d^5*f + 27*a^5*c^7*d^4*f^2 - 38*a^6*c^6*d^3*f^3 + 27*a^7*c^5*d^2*f^4
 - 9*a^8*c^4*d*f^5 + a^9*c^3*f^6)*e^8 - 5*(3*a^2*c^10*d^8 - 40*a^3*c^9*d^7*f + 180*a^4*c^8*d^6*f^2 - 408*a^5*c
^7*d^5*f^3 + 530*a^6*c^6*d^4*f^4 - 408*a^7*c^5*d^3*f^5 + 180*a^8*c^4*d^2*f^6 - 40*a^9*c^3*d*f^7 + 3*a^10*c^2*f
^8)*e^6 - 6*(a*c^11*d^10 - 20*a^2*c^10*d^9*f + 125*a^3*c^9*d^8*f^2 - 400*a^4*c^8*d^7*f^3 + 770*a^5*c^7*d^6*f^4
 - 952*a^6*c^6*d^5*f^5 + 770*a^7*c^5*d^4*f^6 - 400*a^8*c^4*d^3*f^7 + 125*a^9*c^3*d^2*f^8 - 20*a^10*c^2*d*f^9 +
 a^11*c*f^10)*e^4 - (c^12*d^12 - 36*a*c^11*d^11*f + 306*a^2*c^10*d^10*f^2 - 1300*a^3*c^9*d^9*f^3 + 3375*a^4*c^
8*d^8*f^4 - 5832*a^5*c^7*d^7*f^5 + 6972*a^6*c^6...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**2+a)**(3/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x**2/((a + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{{\left (c\,x^2+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)

[Out]

int(x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________